

QUEEN'S UNIVERSITYIONIC LIQUID
LABORATORIES

QUILL

Compression Moulded Flow Fields

for Redox Flow Batteries

Edwin Harvey

Dr Oana Istrate, Prof. Peter Nockemann and Dr Stephen Glover

Redox Flow Battery (RFB)

Flow-through vs Flow-over

- Thicker felt electrodes
- Electrolyte flows-through electrodes
- Higher pressure drop
- Simpler to manufacture

- Thinner paper electrodes
- Electrolyte flows-over **flow field** channels
- Minimal pressure drop
- More complex to manufacture [3]

Flow Field Manufacturing

Existing method: Flow fields machined into graphite plates

Machined flow field using robotic manufacturing [4]

Flow Field Manufacturing

Proposed method: Manufacturing flow field parts using compression moulding of polymer composites

Flow field concept manufactured through compression moulding

Flow-through electrode concept manufactured through 3D printing

Composite Preparation

• Graphite and polymer combined using a latex blending procedure [5]

Material Characterisation

- PMMA/expanded graphite composite characterised adjusting expanded graphite wt.%
- 30 wt.% graphite composite achieved conductivity of 1445 S/m comparable to pure graphite
- T_g increases after adding expanded graphite to PMMA

Mould Manufacturing

 Bespoke moulds were designed and manufactured by computer numerical control (CNC) using 6061 Aluminium alloy

Flow field mould can be swapped for different architectures

Flow Field Visual Inspection

QUEEN'S UNIVERSITY IONIC LIQUID LABORATORIES QUILL

Cell Capacity Testing

- Galvanostatic charge-discharge testing over 12 cycles performed
- Setup: Flow fields with carbon felt electrode in 3D-printed flow frame cell [7] using 1.6M vanadium electrolyte
- High density flow field has lower onset voltage than machined graphite

0

Cell Capacity Testing

Charge and
discharge capacity
measured over 12
cycles

- High density compression mould has high initial capacity
- Experiences capacity fade over time
- Med and low density samples have low capacity probably due to poor conductivity

Cell Efficiencies

Average efficiencies and electrolyte utilisation over 12 cycles

- Energy efficiency increases with higher densities probably due to increased electrical conductivity
- Energy efficiency of 81.8%
 achieved for high density
 compression mould just 1.9% less
 than commercial graphite

Summary

- Flow-over RFB cell testing shows comparable cell efficiencies to commercial flow field
- Compression moulded flow fields cheaper to manufacture and more versatile compared to machining graphite
- Promotes the use of flow fields in RFBs due to low costs and comparable performance

Future Work

- Higher density flow field parts/ increased graphite content to increase conductivity
- More detailed electrochemical characterisation to understand capacity fade
- Modelling of electrolyte velocities through electrode and flow field architectures

Flow-through electrode concept manufactured through 3D printing

Acknowledgements

- Supervisors for ongoing support: Oana, Peter and Stephen
- Hugh and Josh for support in battery lab
- Ethan McCulla for help designing flow field mould
- Yoan for help in labs
- Peter Klusener for ongoing support
- PhD funded by Department for the Economy
- Queen's University Ionic Liquid Laboratories (QUILL)
- Polymer Processing Research Centre (PPRC)

Cost Analysis – Moulding

- Cost of producing 1 kg of PMMA/expanded graphite composite estimated at £33 per kg mostly associated with labour costs
- 10 g compression moulded flow cost 33 p per unit

Material	Cost £	Quantity per kg of composite	Cost £
Methyl methacrylate	2 per kg *	0.8	1.6
Expandable graphite	5 per kg *	0.2	1
Coagulating salt	1 per kg *	0.1	0.1
Furnace/ Mixing power	0.3 per kWh	1	0.3
Labour	10 per hr	3	30
PMMA/	33		

*Estimated costs from alibaba.com

Cost Analysis – Machining

- Cost for machined flow field estimated at £10.08 per unit
- More expensive compared to compression moulding method (33 p per unit)

Material	Cost £	Quantity per flow field	Cost £
Graphite Block	5 per kg *	0.01	0.05
Machining power	0.3 per kWh	0.1	0.03
Labour	10 per hr	1	10
	Machined grap	£10.08	

*Estimated costs from alibaba.com